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Abstract— We propose a fast and lightweight end-to-end
convolutional network architecture for real-time segmentation
of high resolution videos, NfS-SegNet, that can segement
2K-videos at 36.5 FPS with 24.3 GFLOPS. This speed and
computation-efficiency is due to following reasons: 1) The
encoder network, NfS-Net, is optimized for speed with sim-
ple building blocks without memory-heavy operations such
as depthwise convolutions, and outperforms state-of-the-art
lightweight CNN architectures such as SqueezeNet [2], Mo-
bileNet v1 [3] & v2 [4] and ShuffleNet v1 [5] & v2 [6] on
image classification with significantly higher speed. 2) The NfS-
SegNet has an asymmetric architecture with deeper encoder
and shallow decoder, whose design is based on our empirical
finding that the decoder is the main bottleneck in computation
with relatively small contribution to the final performance.
3) Our novel uncertainty-aware knowledge distillation method
guides the teacher model to focus its knowledge transfer on the
most difficult image regions. We validate the performance of
NfS-SegNet with the CITYSCAPE [1] benchmark, on which
it achieves state-of-the-art performance among lightweight
segementation models in terms of both accuracy and speed.

I. INTRODUCTION

Recently, deep neural network architectures for visual
recognition have become deeper and wider [7], [8], [9]
compared to the deep network models in the past. Thanks
to the greatly enhanced learning capacity, these deep and
wide networks architectures have achieved remarkable im-
provements in prediction accuracies, even surpassing human
performance in various vision applications (e.g. visual object
categorization). Yet, since the focus of research in recent
years was mostly on improving the accuracy, the models
became heavier and require large memory and computations.
However, for many real-world applications of visual recog-
nition such as environment understanding for autonomous
vehicles, evaluation speed is a crucial factor since they may
require real-time processing of the visual inputs and the
models should be often run on devices with limited memory
and comptuational power.

Let us now assume a more concrete real-world scenario
where we build a scene segmentation system for autonomous
vehicles. The first factor we should consider is the amount
of computation (operation per second). While conventional
deep learning models mostly run on powerful GPU servers,
due to security, speed, and network latency issues, remote
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Fig. 1: Accuracy (IoU) over speed of different models on
CITYSCAPES [1] leaderboard. NfS-SegNet achieves fastest speed
with significantly higher accuracy, compared to baseline real-time
semantic segmentation methods.

processing is not a viable option for autonomous driving,
and thus the models should run on embedded devices that
have significantly limited memory and computation power
compared to GPU clusters.

Second, speed is an important factor in autonomous
driving. However, a large portion of the systems on the
leaderboard of the CITYSCAPES [1] benchmark focus only
on the accuracy with very low frame per second (FPS)
and thus cannot be applied to such real-world autonomous
driving scenarios. An important caveat here is that reduction
of the computation do not always yield increased speed;
for instance, if an implementation reduced computations but
at the same time significantly increased memory-instensive
operations, this implementation may greatly slow down the
speed of the model although they may reduce the amount of
computation.

Finally, resolution of the video input is another important
factor that should be put into consideration when building
vision systems for autonomous vehicles. This is because
preventive actions such as Adaptive Cruise Control (ACC)
or Automatic Emergency Braking (AEB) are effective only
when they were done sufficiently early before the accident or
collision actually happens. Yet, with low-resolution videos,
early detection of objects may be difficult, and thus we need
at least Full-HD, or Quad-HD resolution videos as the input.
However, this significantly increases the computation cost of
the recognition models.

The last challenge is that even with all these difficulties,
the model should not compromise its accuracy as it is directly
related to safety. To summarize, a recognition model for
autonomous driving should process high-resolution videos at
high speed, with computing devices that have limited power,
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Fig. 2: System overview: Our network is composed of a fast encoder and has an asymmetric architecture, where the encoder is heavier than
the decoder, and is trained with uncertainty-aware knowledge distillation. The fast encoder network (NfS-Net) and real-time segmentation
network (NfS-SegNet) are described in Section III-A and Section III-B. Section IV-A and IV-C introduces our uncertainty-aware knowledge
distillation to utilize the knowledge of the larger teacher network (GD-Net) and unlabeled data from CITYSCAPES [1].

without loss of accuracy. How can we then build a model
that can meet such strict requirements?

To this end, we propose a fast and lightweight deep
network architecture that is trained with novel knowledge
distillation method that considers the uncertainty of the
model when transferring knowledge for real-time scene
segementation. The resulting model, NfS-SegNet, is able
to segment 2K-videos at 36.4 FPS with extremely low
computation, with significantly higher accuracy compared to
existing lightweight segmentation models. We validate NfS-
SegNet on the CITYSCAPES [1] challenge, whose results
show that our model achieves the fastest speed with accuracy
comparable to state-of-the-art systems.

The contribution of this paper is threefold:
• We propose a fast convolutional network architecture,

NfS-Net (quoted from Need-for-Speed), that is shal-
lower and achieves significantly faster forward time than
state-of-the-art architectures.

• We propose a novel knowledge distillation method
called uncertainty-aware knowledge distillation (U-
KD), that considers the model uncertainty of the teacher
network when transferring knowledge to the student,
which significantly outperforms existing knowledge
transfer methods.

• We propose an end-to-end trainable architecture for
real-time scene segmentation (NfS-SegNet) that uses
NfS-Net as an encoder, which obtains the fastest speed
on the CITYSCAPES [1] challenge and significantly
outperforms state-of-the-art lightweight achitectures.

II. RELATED WORK

a) Fast and lightweight convolutional neural networks:
Whilst recent deep convolutional networks have achieved
significant improvements on accuracy over the past archi-
tectures, their sizes and inference time have been increased
proportionally as well. To tackle such increase in compu-
tational complexity and inference speed, researchers have
explored approaches to reduce the number of parameters

in the network while maintaining the accuracy as much
as possible. SqueezeNet [2] replaces the majority of 3x3
convolution filters with 1x1 convolution filters, and placed
downsampling operations at the upper layer of the network.
MobileNet v1 & v2 [3], [4] separate convolution operations
into depth-wise and point-wise convolutions, which lead to
8- and 9-fold reduction in computation. Since the main
bottleneck in the CNN evaluation is the computation for
weights between adjacent layers, ShuffleNet v1 & v2 [5],
[6] perform group convolutions and channel shuffling to
reduce the computation overhead, which drastically reduces
computational complexity. A common limitation of these
approaches is that, even with large reduction in computa-
tional complexity, the actual runtime does not proportially
decrease as well, which is essential in real-time applications.
Contrarily, we propose a novel CNN architecture that does
not only reduce computational complexity, but also can
achieve actual runtime speedups.

b) Knowledge distillation: Knowledge distillation [10]
aims to improve the performance of a target network (stu-
dent) with limited capacity or data, by transferring the knowl-
edge of a pretrained network (teacher), possibly larger or
trained with more data. While Hinton et al. [10] proposed to
transfer soft labels (network outputs) of the teacher network
to the student network, Romeo et al. [11] proposed to per-
form knowledge transfer at intermediate layers as well, with
efficient convolutional regressors. Yim et at. [12] proposed
to distill the knowledge as flows between layers, calculated
by inner products between features at communicating layers.
We target the same problem of compressing the knowledge
of a larger network into a smaller one. However, we use un-
certainty to let the student network focus knowledge transfer
to the regions that are deemed difficult by the teacher, and
thus obtain impressive performance improvements over the
base KD methods.

c) Uncertainty in deep learning: Gal et al. [20] has
shown that deep neural networks trained with dropout reg-
ularization is basically a variational approximation of the



posterior of a deep GP, and showed that a dropout-regularized
network can output uncertainty by applying dropout at test
time. Kendall et al. [19] proposed to capture uncertainty in
both the model and the data using MC-dropout and input-
dependent variance modeling, and applied it to semantic
segmentation and depth estimation. Similarly to Kendall et
al., we obtain uncertainty on the teacher network. However,
we use uncertainty to measure which features to focus on
when transferring knowledge to the student network, which
to our knowledge is a novel attempt in utilizing uncertainty
in knowledge distillation.

d) Real-Time Semantic Segmentation: Recently, there
has been rising interest in building small and efficient neural
networks for scene segmentation [15], [51], [16], [17] for
real-time segmentation on devices with limited memory and
computation power. ENet [15] has a lightweight architecture
that is designed from scratch with efficiency in mind, and
delivers extremely high speed. ICNet [51] uses the image
cascade to speed up the semantic segmentation method.
ESPNet [16], [17] is based on a unique convolutional module
referred to as efficient spatial pyramid (ESP), which factor-
izes standard convolution to group point-wise and depth-wise
“dilated” separable convolutions instead of expensive point-
wise and dilated convolutions. BiSeNet [18] outperformed
all previous models in terms of efficiency and accuracy
by demonstrating that two types of specific CNN modules
(attention refinement and feature fusion module) can perform
well, even when the output of network is low resolution.
These previous studies on real-time semantic segmentation
has focused on decreasing the computational compexity and
reducing the network parameters. However, these models
are optimized for indirect metrics [6] rather than the actual
speed, which can be affected by other factors such as memory
swapping cost. We, on the other hand, focus on improving
actual inference speed.

III. NEED FOR SPEED : END-TO-END REALTIME
SEMANTIC SEGMENTATION NETWORK

To expedite the speed of the deep network for real-time
semantic segmentation, we need a fast encoder architecture.

A. NfS-Net: Fast Encoder

In this section, we propose a fast and lightweight convo-
lutional network architecture for the encoder network. We
optimize the network for speed by using some of the known
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Fig. 3: Comparison of the runtime at each network layer against
that of MobileNet v2 and ShffleNet v2 on 2K-input images.

techniques. Specifically, we perform all convolutions without
bias terms and aggressively downsample in early stage. and
promote reuse of the features as much as possible by using
the DenseNet [21] structure. We use only four types of layers
(convolution, parametric relu, pooling and concatenation).
We minimize memory access which is the main bottleneck
of the inference. Ma et al. [6] also suggests that excessive
group convolution increases memory access cost and network
fragmentation reduces degree of parallelism. Fig 3 shows the
runtime of NfS-Net at each feature map resolution, against
that of well-known fast encoders. We see that NfS-Net does
not have any distinctive bottleneck, while MobileNet or
ShuffleNet has bottleneck at either the lower layer or upper
layer of the network. MobileNet’s bottleneck is on use of
depthwise convolution that requires heavy memory access,
and ShuffleNet is inherently deep in its architecture.

Table I shows that NfS-Net achieves high accuracy
despite of its fast forward time, when compared with baseline
networks.

Model Complexity Top-1 FPS(GFLOPs) err. (%)
0.15 MobileNet v2 [4] 3.3 55.1 3.0
0.25 MobileNet v1 [3] 3.5 49.4 3.2
0.40 MobileNet v2 [4] 3.7 43.4 1.2
ShuffleNet v1 0.5x [5] 3.2 43.2 19.5
SqueezeNet v1.1 [2] 31.7 42.5 42.6
ShuffleNet v2 0.5x [6] 3.5 39.7 8.6
ShuffleNet v1 1.0x [5] 11.0 35.2 13.0
NfS-Net (proposed) 21.3 35.0 71.4
ShuffleNet v2 1.0x [6] 12.4 30.6 7.7
1.00 MobileNet v1 [3] 48.4 29.4 0.8
1.00 MobileNet v2 [4] 25.5 28.0 0.6

TABLE I: Comparison to shallow classification networks at 2K
input. Although NfS-Net has somewhat higher GFLOPs than the
lightest baselines, it is the fastest. Forward times are measured as
the average value of 1000 runs in GTX 1080Ti and E5-2620 CPUs
using a Caffe implementation, that leverages Cuda 10.0 and Cudnn
7.4.1 libraries.

B. NfS-SegNet: Real-time Semantic Segmentation

For ADAS and autonomous driving, input videos need to
have high resolutions to detect objects as early as possible,
in order to have sufficient time to react to unexpected
events or avoid collisions. To this end, we propose an
architecture that can process 2K-videos in real-time. We
start by adding a new encoder with a stride at the end of
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NfS-Net, where the input video resolutions are reduced at
each step, to obtain a feature map that is as small as 1/256
of the original image. This allows us to lower the amount
of computation while dramatically increasing the resolution
of the videos. As for the decoder, we made it lightweight,
and made it to simply double the result of the decoder.
Thus our network architecture is highly asymmetric with
most of the computations and parameters allocated for the
encoder, with a very shallow decoder. This is in contrast to
existing encoder-decoder segmentation architectures, such as
UNet [27], which is mostly symmetric. This design choice is
based on our empirical findings. First, the encoder has a short
runtime even with high computation cost. Figure 4 shows
that while the encoder takes up most of the comptuations,
the actual runtime is marginal compared to the decoder.
Secondly, the increase in the decoder complexity does not
contribute much to the performance. Figure 5 shows that
increasing the complexity of the decoder results in large
reduction in the speed (36.4 FPS → 27.5) while obtaining
diminishing return on the accuracy (IoU 73.1→ 73.4). Based
on these findings, we made the encoder relatively heavier
while slimming down the decoder.

Our resulting network, NfS-SegNet achieves 36 FPS for
2K video frames in the same condition with Table I. As
shown in Table III and Fig 1, NfS-SegNet is significantly
faster than the baseline models with remarkably low amount
of computation.
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Fig. 5: In the experiment in Fig 4, it can be seen that the simpler
the decoder structure, the greater the speed improvement compared
to the accuracy reduction.

IV. IMPROVING MODEL ACCURACY WITH KD
While our lightweight scene segmenation network is fast,

it inevitably suffers from performance degeneration when
compared to larger networks. To tackle this issue, we use
knowledge distillation (KD) [10] with larger teacher net-
works. For the main experiments, we used a large segmen-
tation network that leverages GoogLeNet-v2 [31] as encoder
and DeconvNet [35] as the decoder, which we refer to as GD-
Net. For verification of the method with various teachers, we
also used ENet [15] (lighter than GDNet) and PSPNet [23]
(heavier than GDNet) (See Fig 9). The main student model
is NfS-SegNet, with GD10, GD25, GD50 and GD75 used to
see the KD performance with different compression rates in
Section V-B and V-C.

A. Conventional Knowledge Distillation
We first use the conventional knowledge distillation pro-

posed by Hinton et al. [10]. The top left box of Fig . 2 shows

category # of images group # of images
GT-fine 2,975

seen 178,500GT-coarse 19,998

unlabeled 155,527
45,764 unseen 45,794

TABLE II: Trainable dataset for K.D. except validation and test
sequence in CITYSCAPES [1]. group is defined for incremental
learning scenario of Ch V-B

the example of two types of ground truth provided by the
CITYSCAPES. With the labeling quality of GT-Fine, it is ex-
pensive to produce labeled data in large quantities, and thus
CITYSCAPES only provides 2, 975 training data for GT-Fine
subset. For GT-Coarse, however, they provide 19, 998 images
since such coarse-level annotations are inexpensive to collect.
The teacher prediction of GDNet trained with the union
set of GT-Fine and GT-Coarse (2, 975+19, 998) is shown at
the bottom right box of Fig 2. While the quality of the
predicted segmentation is not as accurate as the ground-truth
annotations of GT-Fine, it shows significantly better quality
compared to ground-truth annotations from GT-Coarse.

With this approach, we can create as much as 224, 294
labeled images. Table III reports the public benchmark
performance of the standard KD. Despite the 10% perfor-
mance improvement (IoU 59.2 → 69.2), there is still a large
performance gap when compared to the performance of the
teacher network. To address this problem, in the following
two paragraphs, we introduce improved KD methods, namely
joint and auxiliary knowledge distillation and uncertainty-
aware knowledge distillation.

B. Joint and Auxiliary Knowledge Distillation

The knowledge distillation approach of Hinton et al. [10]
only transfers knowledge as soft labels, which in our case
is the pixel-wise class predictions at the final layer of
the decoder. However, as done in FitNet [11], we could
perform knowledge transfer at intermediate layers to transfer
knowledge at different resolutions and abstraction levels, and
thus we use a similar scheme but with a different loss.
Our auxiliary knowledge distillation loss for the intermediate
layers l is defined as follows:

LJA(pi, p̂i) =

N∑
i=1

[p̂i log pi + α · smoothL1(pi − p̂i)]

(1)
in which

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(2)

where pi and p̂i is the predicted probability logit of the
student and teacher network repsectively, α is the hyper-
parameter that balances between the cross entropy and the
regression term (we use α = 0.5), and N is the number of
classes.

The main difference of our work from [11] is that we use
both the hard and soft transfer by using both the cross entropy
loss and the smooth L1 loss, instead of the soft L2 loss used
in [11]. We empirically found that this joint training loss
made the model to converge faster and converge at higher



test accuracy. Table III shows that the student model trained
using knowledge distillation with our proposed auxiliary loss
(JA-KD) significantly outperforms the base KD from Hinton
et al. [10].

C. Uncertainty-aware Knowledge Distillation

We now propose our novel knowledge distillation ap-
proach that considers amount of the uncertainty in the
pixel-wise prediction when transferring knowledge from the
teacher network to the student network. Based on Kendall et
al. [19], uncertainty in prediction can be categorized into 1)
aleatoric uncertainty, that comes from inherent ambiguity in
data, and 2) epistemic uncertainty, that comes from the model
due to lack of data. The aleatoric uncertainty in semantic
segementation mostly comes from labeling noise due to
annotators’ mistakes or variations among annotators. The
epistemic uncertainty comes from either confusing classes
(e.g. rider and person of Fig 6) or unspecified classes (e.g.
backpack of the cyclist in the left image of Fig 6). For
more examples, see Fig 6; darker pixels shows pixelwise
predictions with high uncertainty.

Since we are mostly interested in distilling the knowledge
of the teacher network, we use the epistemic uncertainty
for our uncertainty-aware knowledge distillation. Epistemic
uncertainty can be obtained by dropout variational infer-
ence [20], where we obtain the predictive distribution for
each test sample by applying random dropout K-times
and aggregating the results. After obtaining the pixelwise
uncertainty, we use it as an attention mask to guide which
area to focus on, when performing knowledge transfer. The
proposed pixelwise loss is defined as follows:

LU (pi, p̄
mc
i , ūmc

i ) =
N∑
i=1

ūmc
i · [p̄mc

i log pi + α · smoothL1(pi − p̄mc
i )]

(3)

where p̄mc
i is mean of the predictive distribution from the

teacher model and ūmc
i is the binarized uncertainty for the

ith pixel obtained by median-thresholding on the pixelwise
variance, where both the mean and the variance is obtained

Input

Prediction

Variance of Stochastic 
Dropout Samples (rider)

Input

Prediction

Variance of Stochastic 
Dropout Samples (person)

Fig. 6: The model shows high uncertainty on object boundaries
and on regions that are difficult to classify, and our U-KD focus on
those challenging image regions to perform knowledge transfer.

Model FPS GFLOPs
Performance

class category
IoU iIoU IoU iIoU

PSPNet [23] 1.3 1093 82.1 62.4 92.0 81.9
Deeplab v3+[24] 1.5 - 81.2 59.6 91.2 79.2
SegNet [19] 1.6 1530 56.1 34.2 79.8 66.4
ERFNet [25] 11.4 - 69.7 44.1 87.3 72.7
ENet [15] 21.7 37.3 63.1 34.1 83.6 63.1
ESPNet v1 [16] 23.3 - 60.3 31.8 82.2 63.1
ICNet [51] 30.3 - 70.0 - - -
ESPNet v2 [17] 35.4 - 54.7 28.0 78.7 59.5
GDNet (ensemble) 3.0 141.6 75.7 49.1 88.8 72.9
NfS-SegNet (GT)

36.4 24.3

59.2 28.7 80.8 59.3
NfS-SegNet (KD) 69.2 40.3 85.8 67.5
NfS-SegNet (JA-KD) 71.0 41.6 86.6 69.4
NfS-SegNet (U-KD) 73.1 44.4 87.5 70.1

TABLE III: CITYSCAPES benchmark leaderboard. GT: using
only given ground truth, KD: (conventional) knowledge distillation,
JA-KD: KD w/ proposed joint & auxiliary loss, U-KD: JA-KD
w/ uncertainty-aware loss. The performance of NfS-SegNet is very
close to GDNet through the accumulation of the proposed methods,
and the final result is better than other real-time segmentations

using MC-dropout with 5 minibatch. The 1% distortion
is applied at six layers, which have the most compressed
features with low resolution. This formulation may seem
counterintuitive, since it guides the knowledge transfer to
mostly happen on those regions where the teacher is most
uncertain about. However, since the two networks deal with
the same input, and those regions with high uncertainty could
be also confusing to the student network as well, it is actually
beneficial for the teacher to focus on uncertain regions. Fig 6
shows that the uncertain regions are mostly object boundaries
which are crucial in achieving high accuracy for semantic
segmentation, while the certain regions are mostly inside of
the objects that are easy to predict.

V. EXPERIMENTAL RESULTS

Now we validate our fast, lightweight semantic segmenta-
tion network, NfS-SegNet on real-time video segmentation of
first-person dashcam videos, as well as perform experiments
to analyze each of its part (fast CNN encoder, uncertainty-
aware knowledge distillation).

A. CITYSCAPES benchmark

We report the performance of NfS-SegNet, on
CITYSCAPES [1] Pixel-wise Segmentation Benchmark
challenge. Since on the leaderboard for runtime speed, there
are many teams that inaccurately report the forward time
by excluding the time for I/O, and not reporting the actual
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inference time, we reproduced the models and report the
actual inference speed of each model. As shown in Fig 1
and Table III, our NfS-SegNet achives the fastest speed
and smallest amount of computation among the compared
models, while also achieving very high accuracy.

B. Incremental Learning with U-KD

Assume that we have an autonomous vehicle running in a
city or environment that was never seen during training; then
it would be good for the autonomous vehicle to continuously
learn from the incoming video inputs. Thus we simulate this
on-device learning scenario by experimenting with our U-
KD in an incremental learning scenario. We first divide the
training data into the seen and unseen groups (See Table II).
seen is the domain that consists of video frames collected
from the same city that the training data was collected.The
unseen is a set of video frames collected from cities other
than ones that were used in training. In Fig 7, the yellow
and blue curve represents the accuracy improvements on the
already seen domain, and the red and green curves include
situations that have not yet been experienced. The results
show that uncertainty-aware K.D enhance the performance
on its own by concentrating on the patterns that have not
been shown during the original training stage. The proposed
uncertainty has high value on the out-of-distribution visual
patterns, on which our uncertainty-aware knowledge distil-
lation allocate higher weights to consider learning features
on those regions more. Fig 7 shows that our U-KD model
significantly outperforms base KD, both on seen and on the
entire domain. Specifically, U-KD applied to seen domain
performed similarly to KD applied to both seen and unseen
domains, although it uses much less data. The red curve of
Fig 7 achieved an additional improvement of 1.1% over the
converged model in the test submit of CITYSCAPES.

C. Additional Experiments

Effect of compression rate on the performance of
knowledge distillation We have created new GDNet variants
by reducing the number of channels of all convolution layers
to 75%, 50%, 25%, and 10% of the full network. We
performed knowledge distillation experiments with the full
GDNet as a teacher and the network with reduced sizes
as students. Fig 8 shows the results of this experiment.
We observe that the models compressed with knowledge
distillation perform quite well, achieving almost similar or
even better performance when using as much as 25%-50%
of the full network, and that our U-KD achieves significantly

higher accuracy compared to the one trained with base
knowledge distillation at any compression rates.

Using different teacher network architectures To show
that U-KD can be used with different types of teacher net-
work architectures, we experiment with two different teacher
network architectures: 1) PSPNet [23], which is heavier than
GDNet with higher performance, and ENet [15] that is lighter
than GDNet but achives lower performance. Please refer
to Fig 1 for the accuracy and the speed of the two base
networks. Fig 9 shows the segmentation performance of our
NfS-SegNet using the two network architectures as teachers.
We observe that with PSPNet as teachers, NfS-SegNet does
not perform as well since the target network is significantly
smaller (0.022 times of the teacher network). However, U-
KD significantly outperforms base KD. When using ENet
(37.3 GFLOPS) as the teacher, the student NfS-SegNet (24.3
GFLOPS) achieves higher accuracy over the teacher network,
while requiring significantly less computation.
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Fig. 9: Experiments with different teacher networks teacher:
ENet and PSPNet, student: NfS-SegNet. With ENet as teachers,
lighter students outperform the heavier teachers.

VI. CONCLUSION

We proposed a fast and lightweight end-to-end CNN archi-
tecture for real-time scene segmentation of high-resolution
videos. Our model, NfS-SegNet, is composed of a very
fast encoder (NfS-Net), and is designed asymmetrically to
allocate the parameters and computation more on the encoder
that can be computed fast, with less focus on the decoder
which is the bottleneck in inference. We further proposed a
novel uncertainty-aware knowledge distillation method, that
focuses more on the difficult part of the image when distilling
knowledge of the teacher network, and significantly im-
proved the accuracy of our network. We validate our method
on CITYSCAPES benchmark, on which it outperforms all
other lightweight real-time semantic segmentation models in
both the accuracy and the speed.



REFERENCES

[1] Cityscapes Benchmark :
https://www.cityscapes-dataset.com/
benchmarks/

[2] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, and K.
Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and < 0.5 MB model size. In ICLR 2017.

[3] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko W. Wang, T.
Weyand, M. Andreetto, and H. Adam. MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications. arXiv preprint
arXiv:1704.04861v1, 2017.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv preprint
arXiv:1801.04381, 2018

[5] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[6] N. Ma, X. Zhang, H. Zheng and J. Sun. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design, In The European
Conference on Computer Vision (ECCV), 2018.

[7] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition, In ICLR, 2015.

[8] C. Szegedy, S. Ioffe and V. Vanhoucke. Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning, In arXiv preprint
arXiv:1602:07261, 2016.

[9] K. He, X. Zhang, S. Ren and J. Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[10] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a
Neural Network. In NIPS workshop, 2014.

[11] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta and Y.
Bengio. Fitnets: Hints For Thin Deep Nets, In ICLR, 2015.

[12] J. Yim, D. Joo, J. Bae and J. Kim. A Gift from Knowledge Distillation:
Fast Optimization, Network Minimization and Transfer Learning, In
IEEE Conference on Computer Vision and Pattern Recognition(CVPR),
2017.

[13] J. Long, E. Shelhamer and T. Darrell. Fully Convolutional Networks
for Semantic Segmentation, In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[14] A. Krizhevsky, V. Nair and G. Hinton. CIFAR-10 (Canadian Institute
for Advanced Research) :
http://www.cs.toronto.edu/ kriz/cifar.html

[15] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet: A Deep
Neural Network Architecture for Real-Time Semantic Segmentation.
arXiv preprint arXiv:1606.02147, 2016.

[16] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi.
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation. In ECCV, 2018.

[17] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi.
ESPNetv2: A Light-weight, Power Efficient, and General Purpose
Convolutional Neural Network. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[18] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu and N. Sang. BiSeNet:
Bilateral Segmentation Network for Real-time Semantic Segmentation,
In ECCV, 2018.

[19] A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian SegNet:
Model Uncertainty in Deep Convolutional Encoder-Decoder Architec-
tures for Scene Understanding. In BMVC, 2017.

[20] Y. Gal and Z. Ghahramani, Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In ICML, 2016

[21] G. Huang, Z. Liu, L. Maaten, and K.Q. Weinberger. Densely Con-
nected Convolutional Networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. In
IEEE International Conference on Computer Vision (ICCV), 2015.

[23] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid Scene Parsing
Network. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[24] L-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Seg-
mentation. In ECCV, 2018.

[25] E. Romera, J.M. Alvarez, L.M. Bergasa, and R. Arroyo. Efficient
ConvNet for Real-time Semantic Segmentation, In IV, 2017.

[26] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig, and
Z. Wang. Is the deconvolution layer the same as a convolutional layer?
arXiv preprint arXiv:1609.07009, 2016

[27] O. Ronneberger, P. Fischer and T. Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In MICCAI ,2015.

[28] H. Chang, E. Miller, A. McCallum. Active Bias: Training More
Accurate Neural Networks by Emphasizing High Variance Samples.
In NIPS, 2017

[29] J. Shen, N. Vesdapunt, V.N. Boddeti, and K.M. Kitani. In Teacher We
Trust: Learning Compressed Models for Pedestrian Detection. arXiv
preprint arXiv:1612.00478, 2016.

[30] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based
object detectors with online hard example mining. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[31] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understand-
ing deep learning requires rethinking generalization. In ICLR, 2017.

[32] P. Zhao and T. Zhang. Stochastic optimization with importance sam-
pling.arXiv preprint arXiv :1412.2753, 2014.

[33] D. Meng, Q. Zhao, and L. Jiang. What objective does self-paced
learning indeed optimize? arXiv preprint arXiv:1511.06049, 2015.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking
the Inception Architecture for Computer Vision. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[35] H. Noh, S. Hong, B. Han. Learning Deconvolution Network for
Semantic Segmentation. In IEEE International Conference on Computer
Vision (ICCV), 2015.

[36] Y. Mu, W. Liu, X. Liu, and W. Fan. Stochastic gradient made stable:
A manifold propagation approach for large-scale optimization. IEEE
Transactions on Knowledge and Data Engineering, 2016.

[37] C. G. Northcutt, T. Wu, and I. L. Chuang. Learning with confident
examples: Rank pruning for robust classification with noisy labels.
arXiv preprint arXiv:1705.01936, 2017.

[38] T. Pi, X. Li, Z. Zhang, D. Meng, F. Wu, J. Xiao, and Y. Zhuang.
Self-paced boost learning for classification. In IJCAI, 2016.

[39] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015

[40] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convo-
lutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

[41] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,S.
Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[42] J. Jin, A. Dundar, and E. Culurciello. Flattened convolutional neural
networks for feedforward acceleration. arXiv preprint arXiv:1412.5474,
2014

[43] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset
for fine-grained image categorization, In First Workshop on Fine-
Grained Visual Categorization. In IEEE Conference on Computer Vision
and Pattern Recognition(CVPR),2011.

[44] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J.
Philbin, and L. Fei-Fei. The unreasonable effectiveness of noisy data
for fine-grained recognition. arXiv preprint arXiv:1511.06789, 2015.

[45] M. Wang, B. Liu, and H. Foroosh. Design of efficient convolutional
layers using single intra-channel convolution, topological subdivision-
ing and spatial ”bottleneck” structure. arXiv preprint arXiv:1608.04337,
2016.

[46] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In NIPS, 2016.

[47] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convo-
lutional neural networks for mobile devices. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[48] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks.arxiv preprint
arXiv:1611.05431, 2016.

[49] X. He, R. S. Zemel, and M. Carreira-Perpindn. Multiscale conditional
random fields for image labeling. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2004.

[50] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchi-
cal crfs for object class image segmentation. In ICCV, 2009.

[51] H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia. ICNet for Real-Time Seman-
tic Segmentation on High-Resolution Images. CoRR abs/1704.08545,
2017.

[52] V. Lempitsky, A. Vedaldi, and A. Zisserman. Pylon model for semantic
segmentation. In NIPS, 2011.



[53] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate.
Energy minimization with label costs. International Journal of Computer
Vision, 96, 1–27 (2012).

[54] J. M. Gonfaus, X. Boix, J. Van de Weijer, A. D. Bagdanov, J.
Serrat, and J. Gonzalez. Harmony potentials for joint classification and
segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

[55] P. Kohli, L. Ladicky, P. Torr. Robust higher order potentials for
enforcing label consistency. International Journal of Computer Vision,
82, 302–324 (2009).

[56] L.-C. Chen, G. Papandreou, and A. Yuille. Learning a dictionary of
shape epitomes with applications to image labeling. In ICCV, 2013.

[57] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille. Towards
unified depth and semantic prediction from a single image. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[58] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,J.
Winn, and A. Zisserma. The pascal visual object classes challenge a
retrospective. International Journal of Computer Vision, 111, 98–136
(2015).

[59] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R.
Urtasun, and A. Yuille. The role of context for object detection and
semantic segmentation in the wild. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[60] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille.
“Detect what you can: Detecting and representing objects using holistic
models and body parts. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[61] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for
semantic urban scene understanding. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[62] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Semantic image segmentation with deep convolutional nets and fully
connected crfs. In ICLR, 2015.

[63] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hier-
archical features for scene labeling. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(8):1915 - 1929, 2005

[64] G. Lin, C. Shen, I. Reid et al. Efficient piecewise training of deep
structured mod. arXiv preprint arXiv:1504.01013, 2015.

[65] T.-Y. Lin et al., Microsoft COCO: Common objects in context, In
ECCV, 2014.

[66] R. Vemulapalli, O. Tuzel, M.-Y. Liu, and R. Chellappa. Gaussian
conditional random field network for semantic segmentation, In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[67] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig, and
Z. Wang. Is the deconvolution layer the same as a convolutional layer?
arXiv preprint rXiv:1609.07009 [cs.CV], 2016.

[68] X. Li, Y. Zhou, Z. Pan, and J. Feng. Partial Order Pruning: for
Best Speed/Accuracy Trade-off in Neural Architecture Search, In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[69] P. Chao, C. Kao, Y. Ruan, C. Huang, and Y. Lin. HarDNet: A
Low Memory Traffic Network, In IEEE International Conference on
Computer Vision (ICCV), 2019.

[70] Y. Gal. Uncertainty in Deep Learning, University of Cambridge (PhD
Thesis), 2016.

[71] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. Le. MnasNet: Platform-Aware Neural Architecture Search for Mo-
bile, In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.


